Relationship between Edge-wiener Index and Gutman Index of a Graph

نویسندگان

  • MARTIN KNOR
  • RISTE ŠKREKOVSKI
چکیده

The Wiener indexW (G) of a connected graphG is defined to be the sum ∑ u,v d(u, v) of the distances between the pairs of vertices in G. Similarly, the edge-Wiener index We(G) of G is defined to be the sum ∑ e,f d(e, f) of the distances between the pairs of edges in G, or equivalently, the Wiener index of the line graph L(G). Finally, the Gutman index Gut(G) is defined to be the sum ∑ u,v deg(u)deg(v)d(u, v), where deg(u) denotes the degree of a vertex u in G. In this paper we prove an inequality involving the edge-Wiener index and the Gutman index of a connected graph. In particular, we prove that We(G) ≥ 1 4 Gut(G) − 1 4 |E(G)| + 3 4 κ3(G) + 3κ4(G) where κm(G) denotes the number of all m-cliques in G. Moreover, equality holds if and only if G is a tree or a complete graph. Using this result we show that We(G) ≥ δ−1 4 W (G) where δ denotes the minimum degree in G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MORE ON EDGE HYPER WIENER INDEX OF GRAPHS

‎Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge‎ ‎set E(G)‎. ‎The (first) edge-hyper Wiener index of the graph G is defined as‎: ‎$$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$‎ ‎where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). ‎In thi...

متن کامل

Edge-decomposition of topological indices

The topological indices, defined as the sum of contributions of all pairs of vertices (among which are the Wiener, Harary, hyper–Wiener indices, degree distance, and many others), are expressed in terms of contributions of edges and pairs of edges.

متن کامل

Some Topological Indices of Nanostar Dendrimers

Wiener index is a topological index based on distance between every pair of vertices in a graph G. It was introduced in 1947 by one of the pioneer of this area e.g, Harold Wiener. In the present paper, by using a new method introduced by klavžar we compute the Wiener and Szeged indices of some nanostar dendrimers.

متن کامل

A note on vertex-edge Wiener indices of graphs

The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...

متن کامل

A note on connectivity and lambda-modified Wiener index

In theoretical chemistry, -modified Wiener index is a graph invariant topological index to analyze the chemical properties of molecular structure. In this note, we determine the minimum -modified Wiener index of graph with fixed connectivity or edge-connectivity. Our results also present the sufficient and necessary condition for reaching the lower bound.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011